2014 Tech study guide: RF interference, common transmitter and receiver problems

There were some substantial changes to this section. More questions were added about how to troubleshoot RF interference problems and a couple of questions were eliminated, including one about alternator whine…Dan

Since Murphy’s Law—the law that states if anything can go wrong, it will—applies to amateur radio as much as it does to any other pursuit, at some point you will have to deal with problems. These may include overload, distortion, feedback, and interference.

Let’s first consider interference. All of these choices are correct when talking about causes of radio frequency interference (T7B03):

  • fundamental overload
  • harmonics
  • spurious emissions.

Any of these could cause interference to a TV set or radio, and you will want to take steps to find and eliminate that interference. If someone tells you that your station’s transmissions are interfering with their radio or TV reception, you should first make sure that your station is functioning properly and that it does not cause interference to your own radio or television when it is tuned to the same channel or frequency. (T7B06)

While it’s not very likely that your amateur radio station will interfere with a neighbor’s cable TV service, it can sometimes occur. The first step to resolve cable TV interference from your ham radio transmission is to be sure all TV coaxial connectors are installed properly. (T7B12)

Your amateur radio station may interfere with a nearby radio receiver if your signal is so strong that the receiver cannot reject the signal even though your signal is not on the frequency to which the receiver is tuned. When a receiver is unable to reject strong signals outside the AM or FM band, it can cause a broadcast AM or FM radio to receive an amateur radio transmission unintentionally. (T7B02) One way to reduce or eliminate the overloading of a non-amateur radio or TV receiver by an amateur signal is to block the amateur signal with a filter at the antenna input of the affected receiver. (T7B05)

Another device that often experiences interference from amateur radio stations is the telephone. The telephone wires act as antenna and the telephone itself demodulates the signal. One way to reduce or eliminate interference by an amateur transmitter to a nearby telephone is to install an RF filter at the telephone. (T7B04)

All of these choices are correct when considering what may be useful in correcting a radio frequency interference problem (T7B07):

  • Snap-on ferrite chokes
  • Low-pass and high-pass filters
  • Band-reject and band-pass filters

Interference works both ways. Your neighbors may have wireless devices, sometimes called “Part 15 devices,” that can interfere with your station. A Part 15 device is an unlicensed device that may emit low powered radio signals on frequencies used by a licensed service. (T7B09) All of these choices are correct when considering what you should do if something in a neighbor’s home is causing harmful interference to your amateur station (T7B08):

  • Work with your neighbor to identify the offending device
  • Politely inform your neighbor about the rules that require him to stop using the device if
    it causes interference
  • Check your station and make sure it meets the standards of good amateur practice

Perhaps the most common problem that amateur radio operators have is distorted or noisy audio when transmitting. There are many reasons for poor audio. All of these choices are correct if you receive a report that your audio signal through the repeater is distorted or unintelligible (T7B10):

  • Your transmitter may be slightly off frequency
  • Your batteries may be running low
  • You could be in a bad location

Reports of garbled, distorted, or unintelligible transmissions is a symptom of RF feedback in a transmitter or transceiver. (T7B11) Sometimes, garbled or distorted audio when operating FM is the result of over-deviation. Talk farther away from the microphone is one thing you can do if you are told your FM handheld or mobile transceiver is over-deviating. (T7B01)

2014 Tech study guide: receivers, transmitters, and transceivers

This section was changed quite a bit. It used to include four block diagrams, but the question pool committee eliminated all of them. Bravo! Dan

In the early days of radio, amateur radio operators used separate receivers and transmitter units. Nowadays, however, most use radios called transceivers. A  transceiver is a unit combining the functions of a transmitter and a receiver. (T7A02)

There are many different types of transceivers. A multi-mode VHF transceiver is the type of device that is most useful for VHF weak-signal communication. (T7A09) Instead of purchasing a multi-mode VHF transceiver, many amateurs use a transverter to convert the signals from their HF transceiver to the VHF, UHF, and even microwave bands. For example, a device that would take the output of a low-powered 28 MHz SSB exciter and produces a 222 MHz output signal is a transverter. (T7A06)

Many, if not most, new amateurs purchase a handheld transceiver, sometimes called a “handie-talkie,” or HT, as their first transceiver. One disadvantage of of using a handheld transceiver is that the maximum output power is generally only 5 W, and because of this, they have limited range. To increase the low-power output of a handheld transceiver, and therefore its, range, you can use an RF power amplifier. (T7A10)

When talking about a transceivers specifications, we still refer to its receiver and transmitter. The two most important specifications for a receiver are sensitivity and selectivity. Sensitivity is the term that describes the ability of a receiver to detect the presence of a signal. (T7A01) The term that describes the ability of a receiver to discriminate between multiple signals is selectivity. (T7A04)

To improve the sensitivity of a receiver, you can use an RF preamplifier. An RF preamplifier is installed between the antenna and receiver. (T7A11)

Most HF transceivers have some version of a superheterodyne receiver. In a superheterodyne receiver, we first convert an incoming radio signal from its frequency to an intermediate frequency, or IF. The circuit that does this is the mixer. A mixer is used to convert a radio signal from one frequency to another. (T7A03)

When transmitting, we want to generate an RF signal with a specific frequency. To do that, we use an oscillator. Oscillator is the name of a circuit that generates a signal of a desired frequency. (T7A05)

To transmit a voice signal we have to combine an audio frequency signal from the microphone with the RF carrier signal generated by the transmitter. Modulation is the term that describes combining speech with an RF carrier signal. (T7A08) Modulators use a type of mixer circuit to accomplish this process.

2014 Tech study guide: operating controls

Question T4B12 about the function of automatic gain control was added to this section…Dan

To properly operate a transceiver, you need to know how to use the controls. Perhaps the most important transmitter control is microphone gain. If a transmitter is operated with the microphone gain set too high, the output signal might become distorted. (T4B01)

You also need to know how to set the operating frequency of your transceiver. The keypad or VFO knob can be used to enter the operating frequency on a modern transceiver. (T4B02) A way to enable quick access to a favorite frequency on your transceiver is to store the frequency in a memory channel. (T4B04)

A common receiver control on VHF/UHF transceivers is the squelch control. The purpose of the squelch control on a transceiver is to mute receiver output noise when no signal is being received. (T4B03) If set too high, then you will not be able to hear low-level signals.

Another common setting on VHF/UHF transceivers is the offset frequency. This is especially important when operating repeaters. The common meaning of the term “repeater offset” is the difference between the repeater’s transmit and receive frequencies. (T4B11)

A common receiver control on HF transceivers is the RIT control. The term “RIT” means Receiver Incremental Tuning. (T4B07) The receiver RIT or clarifier are controls that could be used if the voice pitch of a single-sideband signal seems too high or low. (T4B06)

Another common control on a receiver is the automatic gain control, or AGC. Its function is to keep received audio relatively constant. (T4B12) This is important because HF signal strengths can vary widely. and that can cause audio levels to vary widely as well.

HF transceivers are often equipped with a variety of different filters. The advantage of having multiple receive bandwidth choices on a multimode transceiver is that it permits noise or interference reduction by selecting a bandwidth matching the mode. (T4B08) For example, 2400 Hz is an appropriate receive filter to select in order to minimize noise and interference for SSB reception. (T4B09) 500 Hz is an appropriate receive filter to select in order to minimize noise and interference for CW reception. (T4B10)

2014 Tech study guide: station setup

There were two question changes in this section. Question T4A02 was changed from a question about headphones to a question about using computers in the shack. Question T4A05 was changed from a question about band-reject filters to one about using an SWR meter. I’ve added that question to the appropriate section…Dan

When setting up an amateur radio station, choosing the radio itself is the most important consideration, but you must also choose a wide range of accessories, such as power supplies and microphones. In addition, how you set up the station is important for it to operate efficiently.

One accessory that you’ll definitely need is a power supply to provide the DC voltage and current that your radio needs. A good reason to use a regulated power supply for communications equipment is that it prevents voltage fluctuations from reaching sensitive circuits. (T4A03) When choosing a supply, check the voltage and current ratings of the supply and be sure to choose one capable of supplying a high enough voltage and enough current to power your radio.

If you are going to operate with one of the voice modes, you’ll need a microphone. When considering the microphone connectors on amateur transceivers, note that some connectors include push-to-talk and voltages for powering the microphone. (T4A01)

A computer has become a very common accessory in an amateur radio “shack.” All of these choices are correct when talking about how a computer be used as part of an amateur radio station (T4A02):

  • For logging contacts and contact information
  • For sending and/or receiving CW
  • generating and decoding digital signals

If you plan to operate packet radio, you will need a computer and a terminal controller, or TNC, in addition to the radio. A terminal node controller would be connected between a transceiver and computer in a packet radio station. (T4A06) The TNC converts the ones and zeroes sent by the computer into tones sent over the air.

A more modern way to operate digital modes, such as RTTY or PSK-31, is to use a computer equipped with a sound card. When conducting digital communications using a computer, the sound card provides audio to the microphone input and converts received audio to digital form. (T4A07) The sound card may be connected directly to the radio, but it’s usually better to connect it through a device that isolates the radio from the computer. This prevents ground loops from causing the signal to be noisy.

Audio and power supply cables in a amateur radio station sometimes pick up stray RF. At minimum, this RF can cause the audio to be noisy. At worst, it can cause a radio or accessory to malfunction. To reduce RF current flowing on the shield of an audio cable (or in a power supply cable), you would use a ferrite choke. (T4A09)

Modern radio equipment is very well-designed, and harmonic radiation is rarely a problem these days. Even so, there may be times when it does become a problem, and you’ll have to take steps to attenuate the harmonics. To reduce harmonic emissions, a filter must be installed between the transmitter and the antenna. (T4A04)

Good grounding techniques can help you avoid interference problems. When grounding your equipment, you should connect the various pieces of equipment to a single point, keep leads short, and use a heavy conductor to connect to ground. Flat strap is the type of conductor that is best to use for RF grounding. (T4A08)

If you plan to install a radio in your car and operate mobile, you have a different set of challenges. One is connecting the radio to the car’s power system. Some amateurs connect their radio with a cigarette lighter plug, but this plug is not designed for high currents. Instead, a mobile transceiver’s power negative connection should be made at the battery or engine block ground strap. (T4A11) The positive connection can also be made at the battery or through an unused position of the vehicle’s fuse block.

Another challenge is noise generated by the car itself. One thing that could be happening if another operator reports a variable high-pitched whine on the audio from your mobile transmitter is that noise on the vehicle’s electrical system is being transmitted along with your speech audio. (T4A12)

The alternator is often the culprit.  The alternator is the source of a high-pitched whine that varies with engine speed in a mobile transceiver’s receive audio. (T4A10) Should this be a problem, there are filters that you can install to mitigate the alternator whine. One thing that would reduce ignition interference to a receiver is to turn on the noise blanker. (T4B05)

2014 Tech study guide: electrical safety

Several changes were made to this section that I don’t like. For example, the question pool committee removed the question about 30V being the commonly accepted value for the lowest voltage that can cause a dangerous electric shock. The question about 100 mA being the lowest amount of electrical current flowing through the body that is likely to cause death was removed from the 2010 question pool, so now there are no questions at all about these values. I’m leaving them in the study guide, though, because I think they’re important.

The committee also removed the question about charging a 12 V battery by connecting it to your car battery and running the engine. I’m all for removing that question. It was replaced by a question about what might happen if you short the terminals of a 12V battery…Dan

BE SAFE!

When operating or working on amateur radio equipment, it’s possible to come into contact with dangerous voltages and currents. Because it would be a shame to lose a single person, it’s important to know how to be safe when working with electricity. Having said that, 30 volts is the commonly accepted value for the lowest voltage that can cause a dangerous electric shock, and 100 mA is the lowest amount of electrical current flowing through the body that is likely to cause death. These are not very large values.

All of these choices are correct when considering how current flowing through the body can cause a health hazard (T0A02):

  • By heating tissue
  • It disrupts the electrical functions of cells
  • It causes involuntary muscle contractions

Three-wire electrical outlets and plugs are safer than two-wire outlets and plugs, and you should use three-wire plugs for all of your amateur radio equipment. The third wire provides an independent, or safety ground. Safety ground is connected to the green wire in a three- wire electrical AC plug. (T0A03)

All of these choices are correct when choosing a good way to guard against electrical shock at your station (T0A06):

  • Use three-wire cords and plugs for all AC powered equipment
  • Connect all AC powered station equipment to a common safety ground
  • Use a circuit protected by a ground-fault interrupter

Individual pieces of equipment may have their own fuses to protect that piece of equipment should something happen that causes that equipment to draw excessive current. The purpose of a fuse in an electrical circuit is to interrupt power in case of overload. (T0A04) When replacing a fuse, always replace the blown fuse with a fuse of the same type and value. It is, for example, unwise to install a 20-ampere fuse in the place of a 5-ampere fuse because excessive current could cause a fire. (T0A05)

If you plan to build your own equipment, be sure to include fuses in your designs. A fuse or circuit breaker in series with the AC “hot” conductor should always be included in home-built equipment that is powered from 120V AC power circuits. (T0A08)

Whenever you’re working on equipment, be sure to disconnect it from the power lines, and even then be careful working around a power supply’s capacitors. If a power supply is turned off and disconnected, you might receive an electric shock from stored charge in large capacitors. (T0A11)

Finally, it’s necessary to take precautions when using batteries to power your amateur radio station. Conventional 12-volt storage batteries present several safety hazards. Shorting the terminals can cause burns, fire, or an explosion (T0A01), explosive gas can collect if not properly vented (T0A09), and, if a lead-acid storage battery is charged or discharged too quickly, the battery could overheat and give off flammable gas or explode. (T0A10)

2014 Tech study guide: modulation modes, signal bandwidth

The only change to this section i s that the answer to question T8A09 was changed from “between 5 and 10 kHz” to “between 10 and 15 kHz.”

When you get your Technician license, chances are FM is the type of modulation that you’ll use first. Frequency modulation, or FM, is the type of modulation most commonly used for VHF and UHF voice repeaters. (T8A04) FM is also the type of modulation most commonly used for VHF packet radio transmissions. (T8A02)

Single sideband, or SSB, is the type of voice modulation most often used for long-distance or weak signal contacts on the VHF and UHF bands. (T8A03) Single sideband is a form of amplitude modulation. (T8A01) A single-sideband signal may be upper- or lower-sideband. Upper sideband is normally used for 10 meter HF, VHF and UHF single-sideband communications. (T8A06)

The primary advantage of single sideband over FM for voice transmissions is that SSB signals have narrower bandwidth. (T8A07) The approximate bandwidth of a single sideband voice signal is 3 kHz. (T8A08) The approximate bandwidth of a VHF repeater FM phone signal is between 10 and 15 kHz. (T8A09)

Morse Code, or CW, is the type of emission that has the narrowest bandwidth. (T8A05) The approximate maximum bandwidth required to transmit a CW signal is 150 Hz. (T8A11) International Morse is the code used when sending CW in the amateur bands. (T8D09) All of these choices are correct when talking about instruments used to transmit CW in the amateur bands (T8D10):

  • Straight Key
  • Electronic Keyer
  • Computer Keyboard

Some modes have very wide bandwidths. The typical bandwidth of analog fast-scan TV transmissions on the 70 cm band, for example, is about 6 MHz. (T8A10) The type of transmission indicated by the term NTSC is an analog fast scan color TV signal. (T8D04)

2014 Tech study guide: SWR and antenna measurements

In the 2010 study guide, this section was part of the section on feedlines and connectors. I think it makes more sense to separate it like I have here. There is one added question in this section T7C13 asks what a dummy load consists of…Dan

Standing wave ratio is a term you’ll often hear when talking about antennas and feedlines. In general terms, standing wave ratio (SWR) is a measure of how well a load is matched to a transmission line. (T7C03) In this context, the “load” is the antenna. When we say that an antenna is matched to a transmission line, we mean that the impedance of the transmission line is equal to the impedance of the antenna.

The reason it is important to have a low SWR in an antenna system that uses coaxial cable feedline is to allow the efficient transfer of power and reduce losses. (T9B01) The bigger the mismatch is between the feedline and the load, the higher the SWR will be, and the more power you will lose in the feedline. Power lost in a feedline is converted into heat. (T7C07) Power converted into heat is not radiated by the antenna, meaning your radiated signal will be weaker.

You can measure the SWR of your antenna system with an SWR meter. You usually connect the SWR meter near the output of your transmitter because it is important to have a low SWR at that point. A directional wattmeter is an instrument other than an SWR meter that you could use to determine if a feedline and antenna are properly matched. (T7C08)

1 to 1 is the reading on an SWR meter indicates a perfect impedance match between the antenna and the feedline. (T7C04) 2 to 1 is the approximate SWR value above which the protection circuits in most solid-state transmitters begin to reduce transmitter power. (T7C05) An SWR reading of 4:1 means that there is an impedance mismatch. (T7C06)

One way to ensure that the impedance of the antenna system matches the output impedance of transmitter is to use an antenna tuner. An antenna tuner matches the antenna system impedance to the transceiver’s output impedance. (T9B04)

In addition to the SWR meter and the directional wattmeter, there are a couple of other types of test instruments commonly found in an amateur’s “shack.” One instrument that every shack should have is the dummy load. A dummy load consists of a non-inductive resistor and a heat sink. (T7C13) The primary purpose of a dummy load is to prevent the radiation of signals when making tests. (T7C01)

Another common test instrument is the antenna analyzer. An antenna analyzer is an instrument that can be used to determine if an antenna is resonant at the desired operating frequency. (T7C02) You can also make a number of other measurements that will help you set up an antenna system, such as SWR, capacitance, and inductance.

2014 Tech study guide: types of feedline, connectors

In the 2010 study guide, I also included questions about SWR and antenna measurements in this section. For 2014, however, I’ve decided to make that a separate section…Dan

Feedlines connect radios to antennas. There are many different types of feedlines, but coaxial cable is used more often than any other feedline for amateur radio antenna systems because it is easy to use and requires few special installation considerations. (T9B03) A common use of coaxial cable is carrying RF signals between a radio and antenna. (T7C12) Note, however, that the loss increases as the frequency of a signal passing through coaxial cable is increased. (T9B05)

When choosing a feedline, it is important to match the impedance of the feedline to the output impedance of the transmitter and the input impedance of the antenna. Impedance is a measure of the opposition to AC current flow in a circuit. (T5C12) Ohms are the units of impedance. (T5C13)

Most amateur radio transmitters are designed to have an output impedance of 50 ohms. Because that is the case, the impedance of the most commonly used coaxial cable in typical amateur radio installations is 50 ohms. (T9B02)

RG-58 and RG-8 are two types of coaxial cable often used in amateur radio stations. Both have an impedance of 50 ohms, but there are important differences between the two. One electrical difference between the smaller RG-58 and larger RG-8 coaxial cables is that RG-8 cable has less loss at a given frequency. (T9B10) The type of coax that has the lowest loss at VHF and UHF is air-insulated hard line. (T9B11)

Moisture contamination is the most common cause for failure of coaxial cables. (T7C09) One way that moisture enters a cable is via cracks in the cable’s outer jacket. The reason that the outer jacket of coaxial cable should be resistant to ultraviolet light is that ultraviolet light can damage the jacket and allow water to enter the cable.(T7C10) A disadvantage of “air core” coaxial cable when compared to foam or solid dielectric types is that it requires special techniques to prevent water absorption. (T7C11)

PL-259 connectors are the most common type of connectors used on coaxial cables in amateur radio stations. One thing that is true of PL-259 type coax connectors is that they are commonly used at HF frequencies. (T9B07)

One problem with PL-259 connectors is that they are not the most suitable connector when operating at higher frequencies. Instead, a Type N connector is most suitable for frequencies above 400 MHz. (T9B06)

No matter what type of connector you use, coax connectors exposed to the weather should be sealed against water intrusion to prevent an increase in feedline loss. (T9B08) Also make sure to tighten connectors well. Also make sure that your antenna connections are tight and the connectors are soldered properly. A loose connection in an antenna or a feedline might cause erratic changes in SWR readings. (T9B09)

 

What’s up at KB6NU? Tech class, W1AW/x

On Saturday, I taught yet another one-day Tech class. It was supposed to be the biggest one yet. I generally like to limit the number of students to 20, so that the test session doesn’t last forever, but the response was so good that I enrolled 22, and then put several on a waiting list.

22 signed up for Saturday's one-day Tech class, but due to the weather, six were unable to attend.

22 signed up for Saturday’s one-day Tech class, but due to the weather, six were unable to attend.

Unfortunately, the weather here, like in many parts of the Midwest has just been crazy, and Friday night was no exception. We got about three or four inches of snow overnight, and six of the students were unable to make it. A couple of them tried, but I-94, the freeway they needed to take to get to Ann Arbor was closed in a couple of spots due to accidents. They got stuck in all that traffic.

One thing you might notice about this class is that the average age of the students is lower than the average age of the ham population. Most of the students in this class were in their 20s or 30s. Some were from the local hacker community. Some were college students. Who says that amateur radio doesn’t appeal to younger people?

There was a group of five or six guys who were all friends. One of their buddies who already had his ham license paid for all five of them. That was pretty cool.

When all was said and done, fifteen of the sixteen who attended passed the test. And, the one who failed missed it by only one question. So, overall, a pretty successful class this time.

After the test, three of the students went up to the shack at the museum to take pictures. Ovide, K8EV, was up there operating the station, and put them on the air. I caught up with them as we all were leaving, and they were all pretty geeked about making their first HF contact.

From left to right, the three VEs at Saturday's Tech class were George, K9TRV; Jeff, W8SGZ; and Mark, W8FSA. Thanks, guys!

From left to right, the three VEs at Saturday’s Tech class were George, K9TRV; Jeff, W8SGZ; and Mark, W8FSA. Thanks, guys!

11 Qs on a snowy Sunday

Sunday’s weather was not much better. That made it a good day to stay indoors and operate my own station. I made 11 contacts overall on Sunday, including:

  • a couple of South Americans on 10m,
  • W1AW/2 and W1AW/5, and
  • a couple more DX contacts on 40m in the evening.

The W1AW contacts were kind of amusing. I heard W1AW/2 calling CQ on 10108 kHz, listening up. Except that he wasn’t listening up. He was S9 here in Michigan, so I knew that he should be able to hear me, but after several CQs, it was apparent that he wasn’t hearing anyone. So, guessing that he wasn’t really listening up, I called him on the transmit frequency, and sure enough, he came back to me. He seemed a bit embarrassed that he had forgotten to turn on split operation.

A bit later, I ran into W1AW/5 on 30m and worked him. After tuning around a bit after that contact, I switched to 40m, and guess who was my first contact on 40? W1AW/5, of course! They’re in the log right next to one another.

2014 Tech study guide: antenna types, polarization

Three questions were added to this section, the question on antenna loading and two on mobile antenna installation. I think these are good changes…Dan

The most common, and perhaps the simplest, antenna is the half-wave dipole antenna. As the name suggests, it measures close to one half wavelength from one end of the antenna to the other. A simple dipole mounted so the conductor is parallel to the Earth’s surface is a horizontally polarized antenna. (T9A03) The direction that radiation is strongest from a half-wave dipole antenna in free space is broadside to the antenna. (T9A10)

The length of a dipole antenna is actually about 5% shorter than the value that you would calculate using the formula wavelength in meters equals 300 divided by frequency in megahertz. The reason for this is that the velocity of a radio wave through wire is lower than the velocity of the wave in free space. Consequently, the approximate length of a 6 meter 1/2-wavelength wire dipole antenna is 112 inches. (T9A09) To make a dipole antenna resonant on a higher frequency, you would shorten it. (T9A05)

Perhaps the second-most popular type of amateur radio antenna is the quarter-wave vertical antenna. For vertical antennas, the electric field is perpendicular to the Earth. (T9A02) This makes them vertically-polarized antennas. The approximate length of a quarter-wavelength vertical antenna for 146 MHz is 19 inches. (T9A08)

Because HF antennas can be very long, many amateurs use a technique called “loading” to shorten them. Loading, when referring to an antenna, means inserting an inductor in the radiating portion of the antenna to make it electrically longer. (T9A14)

Another popular type of antenna is the beam antenna. A beam antenna is an antenna that concentrates signals in one direction. (T9A01) The quad, Yagi, and dish antennas are directional antennas. (T9A06) The gain of an antenna is the increase in signal strength in a specified direction when compared to a reference antenna. (T9A11)

Most hand-held VHF and UHF transceivers come with what’s called a “rubber duck” antenna. A disadvantage of the “rubber duck” antenna supplied with most handheld radio transceivers is that it does not transmit or receive as effectively as a full-sized antenna. (T9A04) A good reason not to use a “rubber duck” antenna inside your car is that signals can be significantly weaker than when it is outside of the vehicle. (T9A07)

A better option is to use an externally-mounted antenna. VHF or UHF mobile antennas are often mounted in the center of the vehicle roof because a roof mounted antenna normally provides the most uniform radiation pattern. (T9A13) Many mobile installations use a 5/8-wavelength vertical antenna. One reason to use a properly mounted 5/8 wavelength antenna for VHF or UHF mobile service is that it offers a lower angle of radiation and more gain than a 1/4 wavelength antenna and usually provides improved coverage. (T9A12)